Let \( \omega \) be a complex cube root of unity with \( \omega \ne...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=SI1EX7zL918
Let \( \omega \) be a complex cube root of unity with \( \omega \neq 1 \). A fair dice is thrown three times. If \( \mathrm{r}_{1}, \mathrm{r}_{2} \) and \( \mathrm{r}_{3} \) are the
\( \mathrm{P} \) numbers obtained on the dice, then the probability that \( \omega^{\mathrm{r}_{1}}+\omega^{\mathrm{r}_{2}}+\omega^{\mathrm{r}_{3}}=0 \) is
W
(A) \( \frac{1}{18} \)
(B) \( \frac{1}{9} \)
(C) \( \frac{2}{9} \)
(D) \( \frac{1}{36} \)
π² PW App Link - https://bit.ly/YTAI_PWAP
π PW Website - https://www.pw.live/