Let \( P M \) be the perpendicular from the point \( P(1,2,3) \) to the \( x-y \) plane. If \( \overrightarrow{O P} \) makes an angle \( \theta \) with
\( \mathrm{P} \) the positive direction of the \( z \)-axis and \( \overrightarrow{O M} \) makes an angle \( \phi \) with the positive direction of \( x \)-axis,
W where \( O \) is the origin and \( \theta \) and \( \phi \) are acute angles, then
(1) \( \cos \theta \cos \phi=1 / \sqrt{14} \)
(2) \( \sin \theta \sin \phi=2 / \sqrt{14}(3) \tan \phi=2 \)
(4) \( \tan \theta=\sqrt{5} / 3 \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live