Let \( P_{m} \) stand for \( { }^{m} P_{m} \), then, \( 1+P_{1}+2 P_{2}+3 P_{3}+\ldots+n \cdot P...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=D8T2xs9gVbs
Let \( P_{m} \) stand for \( { }^{m} P_{m} \), then, \( 1+P_{1}+2 P_{2}+3 P_{3}+\ldots+n \cdot P_{n} \) is equal to
(1) \( (n-1) \) !
(2) \( n \) !
(3) \( (n+1) !-1 \)
(4) \( (n+1) \) !
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live