Let the circles \(C_1: x^2+y^2=9\) and \(C_2:(x-3)^2+(y-4)^2=16\), intersect at the points \(X\).... VIDEO
Let the circles \(C_1: x^2+y^2=9\) and \(C_2:(x-3)^2+(y-4)^2=16\), intersect at the points \(X\) and \(Y\). Suppose that another circle \(C_3:(x-h)^2+(y-k)^2=r^2\) satisfies the following conditions:(i) centre of \(C_3\) is collinear with the centres of \(C_1\) and \(C_2\),(ii) \(C_1\) and \(C_2\) both lie inside \(C_3\), and(iii) \(C_3\) touches \(C_1\) at \(M\) and \(C_2\) at \(N\).
Let the line through \(X\) and \(Y\) intersect \(C_3\) at \(Z\) and \(W\), and let a common tangent of \(C_1\) and \(C_3\) be a tangent to the parabola \(x^2=8 \alpha y\).There are some expressions given in the List-I whose values are given in List-II below:
📲PW App Link - https://bit.ly/YTAI_PWAP 🌐PW Website - https://www.pw.live
Other Videos By PW Solutions 2024-07-29 If the equation \(a|z|^2+\overline{\bar{a} z+\alpha \bar{z}}+d=0\) represents a circle where \(a.... 2024-07-29 For \(a \in C\), let \(A=\{z \in C: \operatorname{Re}(a+\bar{z})>\operatorname{Im}(\bar{a}+z).... 2024-07-29 Let \(A=\left\{\theta \in(0,2 \pi): \frac{1+2 i \sin \theta}{1-i \sin \theta}\right.\text{ is pu.... 2024-07-29 Let \(a \neq b\) be two non-zero real numbers.Then the number of elements in the set \(X=\left\{.... 2024-07-29 Let \(S=\left\{z \in C-\{i, 2 i\}: \frac{z^2+8 i z-15}{z^2-3 i z-2} \in R\right\}\). If \(\alpha.... 2024-07-29 Let \(a, b\) be two real numbers such that \(a b<0\). If the complex number \(\frac{1+a i}{b+.... 2024-07-29 The sum of all the roots of the equation \(\left|x^2-8 x+15\right|-2 x\) \(+7=0\) is:.... 2024-07-29 Let \(S\) be the set of all complex numbers \(z\) satisfying \(\left|z^2+z+1\right|=1\). Then wh.... 2024-07-29 Let \(z=a+i b, b \neq 0\) be complex numbers satisfying \(z^2=\bar{z} \cdot 2^{1-|z|}\). Then th.... 2024-07-29 The complex number \(z=\frac{i-1}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}\) is equal to:.... 2024-07-29 Let the circles \(C_1: x^2+y^2=9\) and \(C_2:(x-3)^2+(y-4)^2=16\), intersect at the points \(X\).... 2024-07-29 The point \(P(a, b)\) undergoes the following three transformations successively:(A) reflection .... 2024-07-29 Let \(\alpha\) and \(\beta\) be the roots of the equation \(x^2+(2 i-1)=0\). Then, the value of .... 2024-07-29 Let \(S=\{z \in C:|z-2|<1, z(1+i)+\bar{z}(1-i) \leq 2\}\). Let \(\mid z-\) \(4 i\mid\) attain.... 2024-07-29 Let \(z\) be a complex number such that \(\left|\frac{z-2 i}{z+i}\right|=2, z \neq-i\). Then \(z.... 2024-07-29 The value of \(\left(\frac{1+\sin \frac{2 \pi}{9}+i \cos \frac{2 \pi}{9}}{1+\sin \frac{2 \pi}{9}.... 2024-07-29 Let \(z_1=2+3 i\) and \(z_2=3+4 i\). The set \(S =\left\{z \in C :\left|z-z_1\right|^2\right.\) .... 2024-07-29 Answer the following by appropriately matching the lists based on the information given in the p.... 2024-07-29 Let \(p, q \in R\) and \((1-\sqrt{3} i)^{200}=2^{199}(p+i q), i=\sqrt{-1}\) Then \(p+q+q^2\) and.... 2024-07-29 The equation \(\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{4}\) represents a circle with:.... 2024-07-29 Let \(\omega \neq 1\) be a cube root of unity. Then the minimum of the set\(\left\{\left|a+b \om....