Let us consider the binomial expression \( (1+x)^{n}=\sum_{r=0}^{n} a_{r} x^{r} \), \( P \) wher...
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=QK9ZiWg-fmk
Let us consider the binomial expression \( (1+x)^{n}=\sum_{r=0}^{n} a_{r} x^{r} \),
\( P \) where \( a_{4}, a_{5} \) and \( a_{6} \) are in \( A P,(n10) \). Consider another
W. binomial expression of \( A=(\sqrt[3]{2}+\sqrt[4]{3})^{13 n} \), the expression of \( A \) contains some rational terms \( T_{a_{1}}, T_{a_{2}}, T_{a_{3}}, \ldots, T_{a_{m}} \) \( \left(a_{1}a_{2}a_{3}\ldotsa_{m}\right) \)
The common difference of the arithmetic progression \( a_{1}, a_{2}, a_{3}, \ldots, a_{m} \) is
(a) 6
(b) 8
(c) 10
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw