Let \(\vec{b}=\hat{i}+\hat{j}+\lambda \hat{k}, \lambda \in R\). If \(\vec{a}\) is a vector such ....
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=PGQrz8IY2HM
Let \(\vec{b}=\hat{i}+\hat{j}+\lambda \hat{k}, \lambda \in R\). If \(\vec{a}\) is a vector such that \(\vec{a} \times \vec{b}=13 \hat{i}-\hat{j}-4 \hat{k}\) and \(\vec{a} \cdot \vec{b}+21=0\), then \((\vec{b}-\vec{a}) \cdot(\hat{k}-\hat{j})+(\vec{b}+\vec{a}) \cdot(\hat{i}-\hat{k})\) is equal to π²PW App Link - https://bit.ly/YTAI_PWAP πPW Website - https://www.pw.live