Let vectors \( \vec{a}, \vec{b}, \vec{c} \) and \( \vec{d} \) be such that \( (\vec{a} \times \v...
Channel:
Subscribers:
458,000
Published on ● Video Link: https://www.youtube.com/watch?v=3UGsxVR2ojE
Let vectors \( \vec{a}, \vec{b}, \vec{c} \) and \( \vec{d} \) be such that \( (\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0} \). Let \( P_{1} \) and \( P_{2} \) be planes determined by the pairs of vectors \( \vec{a}, \vec{b} \) and \( \vec{c}, \vec{d} \), respectively. Then the angle between \( P_{1} \) and \( P_{2} \) is
(A) \( \pi / 4 \)
(B) \( \pi / 3 \)
(C) \( \pi / 2 \)
(D) undefined
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live