Machine Learning Methods for High Throughput Virtual Screening with a focus on Organic Photovoltaics

Published on ● Video Link: https://www.youtube.com/watch?v=M3id4A_P5SI



Duration: 56:21
332 views
13


Speaker(s): Arindam Paul
Facilitator(s): Shahrzad Hosseini

Find the recording, slides, and more info at https://ai.science/e/machine-learning-methods-for-high-throughput-virtual-screening-with-a-focus-on-organic-photovoltaics--2020-05-21-arindam-paul

Motivation / Abstract

Organic solar cells are an inexpensive, flexible alternative to traditional silicon‐based solar cells but disadvantaged by low power conversion efficiency due to empirical design and complex manufacturing processes. This process can be accelerated by generating a comprehensive set of potential candidates. However, this would require a laborious trial and error method of modeling all possible polymer configurations. A machine learning model has the potential to accelerate the process of screening potential donor candidates by associating structural features of the compound using molecular fingerprints with their highest occupied molecular orbital energies. In this paper, extremely randomized tree learning models are employed for the prediction of HOMO values for donor compounds, and a web application is developed. The proposed models outperform neural networks trained on molecular fingerprints as well as SMILES, as well as other state‐of‐the‐art architectures such as Chemception and Molecular Graph Convolution on two datasets of varying sizes.

What was discussed?
1- what was the intuition for using multiple representation come from? the fact that each would capture a different aspect of the molecule?
2-are these specific regression and classification tasks?
3- interpretability of your model?
4- why you used fingerprint representation and not SMILE?
5- which one can be used for inorganic materials
6- Did you use Random forest or Neural networks for transfer learning?


What are the key takeaways?
1- The importance of ML in accelerating the discovery in materials
2- The power of extremely randomized trees in reducing the features
3- The potential of integration of feature manipulation combined with extensive grid search on a small experiment-theory calibrated dataset of organic photovoltaic donors

------
#AISC hosts 3-5 live sessions like this on various AI research, engineering, and product topics every week! Visit https://ai.science for more details




Other Videos By LLMs Explained - Aggregate Intellect - AI.SCIENCE


2020-06-11Meta-Graph: Few-Shot Link Prediction Using Meta-Learning | AISC
2020-06-11Algorithmic Inclusion: A Scalable Approach to Reducing Gender Bias in Google Translate | AISC
2020-06-10Reinforcement Learning in Economics and Finance | AISC
2020-06-05Building (AI?) Products; Step by Step Guide | AISC
2020-06-03The Synthesizability of Molecules Proposed by Generative Models | AISC
2020-05-28A Deterministic Local Interpretable Model-Agnostic Explanations Approach for Computer-Aided Diagnosi
2020-05-28Unifying machine learning and quantum chemistry with a deep neural network | AISC
2020-05-27Model Selection for Optimal Prediction in Statistical Learning - Part 2 / 2 | AISC
2020-05-26Representation Learning of Histopathology Images using Graph Neural Networks | AISC
2020-05-26BillionX acceleration using AI Emulators | AISC
2020-05-22Machine Learning Methods for High Throughput Virtual Screening with a focus on Organic Photovoltaics
2020-05-21Learning the Graphical Structure of Electronic Health Records with Graph Convolutional Transformer
2020-05-20Reinforcement Learning for Batch-to-Batch Bioprocess Optimisation | AISC
2020-05-20Leaf Doctor: Plant Disease Detection Using Image Classification | Deep Learning Workshop Capstone
2020-05-20News ScanNER: Entity Tagging in News Headlines | Deep Learning Workshop Capstone
2020-05-19New methods for identifying latent manifold structure from neural data | ASIC
2020-05-19Using unsupervised machine learning to uncover hidden scientific knowledge | AISC
2020-05-15FineGym: A Hierarchical Video Dataset for Fine-grained Action Understanding
2020-05-14A Literature Review on ML in Climate Science | AISC
2020-05-13[cnvrg.io] Operating System for Machine Learning | AISC
2020-05-12Tobias Pfaff (DeepMind): Learning to Simulate Complex Physics with Graph Networks