Match the columns: \begin{tabular}{|c|l|l|l|} \hline \multicolumn{2}{|c|}{ Column-I } & \multico...
Match the columns:
\begin{tabular}{|c|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{|c|}{ Column-II } \\
\hline A. & \( \begin{array}{l}\text { The coefficient of two consecutive } \\
\text { terms in the expansion of }(1+x)^{n} \\
\text { will be equal then } n \text { can be }\end{array} \) & p. & 9 \\
\hline B. & \( \begin{array}{l}\text { If } 15^{n}+23^{n} \text { is divided by } 19, \text { then } \\
n \text { can be }\end{array} \) & q. & 10 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline C. & \( \begin{array}{l}{ }^{10} C_{0}{ }^{20} C_{10}-{ }^{10} C_{1}{ }^{18} C_{10}+{ }^{10} C_{2}{ }^{16} C_{10} \\
-\ldots . \text { is divisible by } 2^{n} \text {, then } n \text { can be }\end{array} \) & r. & 11 \\
\hline D. & \( \begin{array}{l}\text { If the coefficients of } T_{r}, T_{r+1}, T_{r+2} \\
\text { terms of }(1+x)^{14} \text { are in A.P., then } \\
r \text { is less than }\end{array} \) & s. & 12 \\
\hline & & t. & 14 \\
\hline
\end{tabular}
(a) \( \mathrm{A} \rightarrow \mathrm{p}, \mathrm{B} \rightarrow \mathrm{q}, \mathrm{C} \rightarrow \mathrm{r}, \mathrm{D} \rightarrow \mathrm{p}, \mathrm{q}, \mathrm{r} \)
(b) \( \mathrm{A} \rightarrow \mathrm{q}, \mathrm{s}, \mathrm{B} \rightarrow \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{C} \rightarrow \mathrm{s} \), d, D \( \rightarrow \) p, s
(c) \( \mathrm{A} \rightarrow \mathrm{p}, \mathrm{B} \rightarrow \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{C} \rightarrow \mathrm{r}, \mathrm{D} \rightarrow \mathrm{q} \)
(d) \( \mathrm{A} \rightarrow \mathrm{p}, \mathrm{r}, \mathrm{B} \rightarrow \mathrm{p}, \mathrm{r}, \mathrm{C} \rightarrow \mathrm{p}, \mathrm{q}, \mathrm{D} \rightarrow \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live