Match the complex number given in the list-I with the corresponding arguments is
\begin{tabular}....
Match the complex number given in the list-I with the corresponding arguments is
\begin{tabular}{|l|l|l|l|}
\hline & List -I & & List -II \\
\hline (A) & \( z=-1-i \) & (P) & \( \operatorname{Arg}(z)=\frac{3 \pi}{4} \) \\
\hline (B) & \( z=\frac{1+7 i}{(2-i)^{2}} \) & (Q) & \( \operatorname{Arg}(z)=\frac{-3 \pi}{4} \) \\
\hline (C) & \( z=1+\sqrt{3} i \) & (R) & \( \operatorname{Arg}(z)=\frac{5 \pi}{6} \) \\
\hline (D) & \( z=-2 \sqrt{3}+2 i \) & (S) & \( \operatorname{Arg}(z)=\frac{\pi}{3} \) \\
\hline
\end{tabular}
\( \mathrm{P} \)
W
(1) \( \mathrm{P} \quad \mathrm{Q} \)
(2) \( \mathrm{Q} \)
(3) \( \mathrm{P} \)
(4) \( \mathrm{R} \)
\( \mathrm{R} \)
\( \mathrm{R} \)
\( \mathrm{S} \)
Q
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live
Other Videos By PW Solutions
2024-01-21 | If the identity \( \frac{m !}{x(x+1)(x+2) \ldots . .(x+m)}=\sum_{i=0}^{m} \frac{A_{i}}{x+i} \),
.... |
2024-01-21 | The product of first \( \mathrm{n} \) odd natural numbers equals.... |
2024-01-21 | The number of integral solutions of \( x+y+z=0 \) with \( x \geq-5, y \geq-5, z \geq-5 \) is.... |
2024-01-21 | Consider all \( 2^{n}-1 \) non-empty subsets of the set \( \{1,2 \), \( 3, \ldots \ldots n\} \)..... |
2024-01-21 | Consider all \( 2^{n}-1 \) non-empty subsets of the set \( \{1,2 \), \( \ldots . ., n\} \). For .... |
2024-01-21 | The number of ways in which a committee of 3 women and 4 men be chosen from 8 women and 7
men if.... |
2024-01-21 | If \( P_{r} \) stands for \( { }^{r} P_{r} \), then sum of the series \( 1+P_{1}+2 P_{2} \) \( +.... |
2024-01-21 | If \( x=\omega-\omega^{2}-2 \), then the value of
\( x^{4}+3 x^{3}+2 x^{2}-11 x-6 \) is (where \.... |
2024-01-21 | Rakshit is allowed to select \( (n+1) \) or more books out of \( (2 n+1) \) distinct books. If t.... |
2024-01-21 | Let \( z=9+b i \), where \( b \) is non-zero real and \( i^{2}=-1 \). If the imaginary part of \.... |
2024-01-21 | Match the complex number given in the list-I with the corresponding arguments is
\begin{tabular}.... |
2024-01-21 | If \( \left|\frac{z-2}{z-3}\right|=2 \) represents a circle, then
The center of the circle is.... |
2024-01-21 | If \( \alpha, \beta, \gamma \) are the roots of equations \( x^{3}-3 x^{2}+3 x+7=0 \) and \( \om.... |
2024-01-21 | If \( x=a+i b \) is a complex number such that \( x^{2}=3+ \)
\( 4 i \) and \( x^{3}=2+11 i \), .... |
2024-01-21 | The complex number \( z \) satisfying \( \operatorname{Re}\left(z^{2}\right)=0,|z|=\sqrt{3} \)
a.... |
2024-01-21 | The square roots of \( 5+12 i \) is (are)
(1) \( 3-2 i \)
(2) \( 3+2 i \)
(3) \( -3+2 i \)
(4) \.... |
2024-01-21 | If \( \left|\frac{z-2}{z-3}\right|=2 \) represents a circle, then
The radius of the circle is.... |
2024-01-21 | Let \( z \) be a complex number satisfying \( |z|=3|z-1| \)
then the value of \( \left|z-\frac{9.... |
2024-01-21 | All non zero complex numbers \( z \) satisfying \( \bar{z}=i z^{2} \) is
(are).... |
2024-01-21 | If \( z+z^{-1}=1 \) then the value of \( z^{100}+z^{-100} \) is.... |
2024-01-21 | The greatest value of \( \left|z_{1}+z_{2}\right| \) if \( z_{1}=24+7 i \) and \( \left|z_{2}\ri.... |