Match the entries of Column-I with those of
Column-II.
\begin{tabular}{|l|l|l|l|}
\hline \multic....
Match the entries of Column-I with those of
Column-II.
\( \mathrm{P} \)
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{c|}{ Column-II } \\
\hline (A) & \begin{tabular}{l}
The differential \\
equation corresponding \\
to primitive \( y=e^{c x} \) is
\end{tabular} & (p) & \( x=c\left(x^{2}-y^{2}\right) \) \\
\hline (B) & \begin{tabular}{l}
The differential \\
equation of all straight \\
lines passing through \\
the origin is
\end{tabular} & (q) & \( \frac{d y}{d x}=\left(\frac{y}{x}\right) \log y \) \\
\hline (C) & \begin{tabular}{l}
The solution of the \\
differential equation \\
\( \frac{d y}{d x}=\frac{(1+x) y}{(y-1) x} \) is
\end{tabular} & \( \frac{d y}{d x}=\frac{y}{x} \) \\
\hline (D) & \begin{tabular}{l}
The solution of the \\
differential equation \\
\( \left(x^{2}+y^{2}\right) d x=2 x y d y \) \\
is
\end{tabular} & (s) & \( \log x y+x-y=c \) \\
\hline
\end{tabular}
(1) (A) \( \rightarrow(\mathrm{r}),(\mathrm{B}) \rightarrow(\mathrm{q}),(\mathrm{C}) \rightarrow(\mathrm{s}),(\mathrm{D}) \rightarrow(\mathrm{p}) \)
(2) (A) \( \rightarrow \) (r), (B) \( \rightarrow \) (s), (C) \( \rightarrow \) (q), (D) \( \rightarrow \) (p)
(3) (A) \( \rightarrow \) (q), (B) \( \rightarrow(\mathrm{r}),(\mathrm{C}) \rightarrow(\mathrm{p}),(\mathrm{D}) \rightarrow(\mathrm{s}) \)
(4) (A) \( \rightarrow(\mathrm{q}),(\mathrm{B}) \rightarrow(\mathrm{r}),(\mathrm{C}) \rightarrow(\mathrm{s}),(\mathrm{D}) \rightarrow(\mathrm{p}) \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2024-01-22 | If \( x, y, a, b \in R, a \neq 0 \) and \( (a+i b)(x+i y)=\left(a^{2}+b^{2}\right) \)
\( i \), t.... |
2024-01-22 | The number of Solution of \( z^{2}+|z|=0 \) is.... |
2024-01-22 | If \( x+i y=\sqrt{\frac{a+i b}{c+i d}} \), then \( \left(x^{2}+y^{2}\right)^{2}\left(c^{2}+d^{2}.... |
2024-01-22 | Match the statements/expressions in Column-I with the values given in Column II:
\begin{tabular}.... |
2024-01-22 | The number of complex numbers \( z \) such that \( (1+i) z \) \( =i|z| \).... |
2024-01-22 | If a line makes angles \( \alpha, \beta \) and \( \gamma \) with the coordinate axes, then \( \c.... |
2024-01-22 | Match the following lists.
\begin{tabular}{|c|c|c|c|}
\hline & List-I & & List -II \\
\hline (A).... |
2024-01-22 | \( \vec{a} \) and \( \vec{c} \) are unit vectors and \( |\vec{b}|=4 \) with \( \vec{a} \times \v.... |
2024-01-22 | The vectors \( a, b \) and \( c \) are equal in length and taken pairwise, make equal angles. If.... |
2024-01-22 | Let the unit vectors \( a \) and \( b \) be perpendicular and the unit vector \( c \) be incline.... |
2024-01-22 | Match the entries of Column-I with those of
Column-II.
\begin{tabular}{|l|l|l|l|}
\hline \multic.... |
2024-01-22 | The position vectors of the points \( \mathrm{A} \) and \( \mathrm{B} \) with respect to \( \mat.... |
2024-01-22 | The position vectors of the points \( \mathrm{A} \) and \( \mathrm{B} \) with respect to \( \mat.... |
2024-01-22 | The volume of the tetrahedron whose vertices are the points with position vectors \( i-6 j+10 k,.... |
2024-01-22 | Match the items of Column-I with those in Column II.
\begin{tabular}{|l|l|l|l|}
\hline \multicol.... |
2024-01-22 | If the vector \( 2 i-3 j+7 k \) is inclined at angles \( \alpha, \beta, \gamma \) with the coord.... |
2024-01-22 | \( P(0,5,6), Q(1,4,7) . R(2,3,7) \) and \( S(3,4,6) \) are four points in the space. The point f.... |
2024-01-22 | For non-coplanar vectors \( a, b \) and \( c,|(a \times b) . \mathrm{c}|=|a| \)
\( |b||c| \) hol.... |
2024-01-22 | The points \( (0,7,10),(-1,6,6) \) and \( (-4,9,6) \) are the vertices of.... |
2024-01-22 | \( \left(x^{2}+y^{2}\right) d y=x y d x \). If \( y\left(x_{0}\right)=e, y(1)=1 \), then value o.... |
2024-01-22 | If \( \alpha, \beta, \gamma \) are the angles which a line makes with the coordinate axes, then.... |