Match the following columns: \( (3,0) \) is the pt. from which three normal are drawn to the par....
Match the following columns: \( (3,0) \) is the pt. from which three normal are drawn to the parabola \( y^{2}=4 x \) which meet the parabola in the points \( P, Q \) and \( R \).
\( \mathrm{P} \)
Then
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{c|}{ Column-II } \\
\hline (A) & Area of \( \triangle P Q R \) & (P) & 2 \\
\hline (B) & \begin{tabular}{l}
Radius of circumcircle of \\
\( \triangle P Q R \)
\end{tabular} & (Q) & \( 5 / 2 \) \\
\hline (C) & Centroid of \( \triangle P Q R \) & (R) & \( (5 / 2,0) \) \\
\hline (D) & Circum centre of \( \triangle P Q R \) & (S) & \( (2 / 3,0) \) \\
\hline
\end{tabular}
(1) \( \mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{S} \); \( \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{P} \)
(2) \( \mathrm{A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{Q} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{S} \)
(3) \( \mathrm{A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{Q} ; \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{R} \)
Activate Windows
(4) \( \mathrm{A} \rightarrow \mathrm{R} ; \mathrm{B} \rightarrow \mathrm{S} ; \mathrm{C} \rightarrow \mathrm{Q} ; \mathrm{D} \rightarrow \mathrm{P} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2024-01-23 | The equation of the common tangent touching the
circle \( (x-3)^{2}+y^{2}=9 \) and the parabola .... |
2024-01-23 | A focal chord of the parabola \( y^{2}=16 x \) touches the circle \( (x-6)^{2}+y^{2}=2 \). Then .... |
2024-01-23 | From the point \( (15,12) \), three normal are drawn to the parabola \( y^{2}=4 x \). The centro.... |
2024-01-23 | If the line \( y=2-x \) is tangent to the circle \( S \) at the point \( P(1,1) \) and circle \(.... |
2024-01-23 | The line \( x-y-1=0 \) meets the parabola \( y^{2}=4 x \) at \( A \) and \( B \). Normals at \( .... |
2024-01-23 | If \( \left(x_{1}, y_{1}\right) \) is the point of contact of the tangent parallel
to the line \.... |
2024-01-23 | If the line \( x-1=0 \) is the directrix of the parabola \( y^{2}-k x+8=0 \), then on of the val.... |
2024-01-23 | Let \( S=\left\{(x, y) \mid x, y \in R, x^{2}+y^{2}-10 x+16=0\right\} \). The largest value of \.... |
2024-01-23 | The radical centre of the three circles is at the origin.
The equations of the two of the circle.... |
2024-01-23 | Consider the family of circles
\( x^{2}+y^{2}-2 x-2 \lambda y-8=0 \) passing through two fixed
p.... |
2024-01-23 | Match the following columns: \( (3,0) \) is the pt. from which three normal are drawn to the par.... |
2024-01-23 | Tangents are drawn to circle \( x^{2}+y^{2}=1 \) at its intersection points (distinct) with the .... |
2024-01-23 | Let \( A(3,7) \) and \( B(6,5) \) are two points. \( C: x^{2}+y^{2}-4 x \) \( -6 y-3=0 \) is a c.... |
2024-01-23 | An equation of a circle touching the axes of coordinates and the line \( x \cos \alpha+y \sin \a.... |
2024-01-23 | Let each of the circles,
\[
\begin{array}{l}
S_{1} \equiv x^{2}+y^{2}+4 y-1=0, \\
S_{2} \equiv x.... |
2024-01-23 | Let each of the circles,
\[
\begin{array}{l}
S_{1} \equiv x^{2}+y^{2}+4 y-1=0, \\
S_{2} \equiv x.... |
2024-01-23 | Let \( A(3,7) \) and \( B(6,5) \) are two points. \( C: x^{2}+y^{2}-4 x \) \( -6 y-3=0 \) is a c.... |
2024-01-23 | If is a point on the circle \( x^{2}+y^{2}=9, \mathrm{Q} \) is a point on the line \( 7 x+y+3=0 .... |
2024-01-23 | If a circle passes through the point \( \left(3, \sqrt{\frac{7}{2}}\right) \) and
touches \( x+y.... |
2024-01-23 | Let each of the circles,
\[
\begin{array}{l}
S_{1} \equiv x^{2}+y^{2}+4 y-1=0, \\
S_{2} \equiv x.... |
2024-01-23 | The equation of the circle which touches the axis of
coordinates and the line \( \frac{x}{3}+\fr.... |