Match the following lists. \begin{tabular}{|l|l|l|l|} \hline & List \( -\mathbf{I} \) & & List-I....
Match the following lists.
\begin{tabular}{|l|l|l|l|}
\hline & List \( -\mathbf{I} \) & & List-II \\
\hline (A) & \begin{tabular}{l}
\( (p \wedge q) \vee(\sim p) \vee \) \\
\( (p \wedge \sim q) \)
\end{tabular} & \( \mathbf{( P )} \) & \( p \vee(\sim q) \) \\
\hline (B) & \( (p \wedge q) \wedge \sim(p \vee q) \) & (Q) & \( \sim p \wedge q \) \\
\hline (C) & \( \sim((\sim p) \wedge q) \) & (R) & A tautology \\
\hline (D) & \( \sim(\sim p \rightarrow \sim q) \) & & \begin{tabular}{l}
A \\
contradiction
\end{tabular} \\
\hline
\end{tabular}
\( \mathrm{P} \)
\begin{tabular}{lllll}
(1) & \( \mathrm{R} \) & \( \mathrm{S} \) & \( \mathrm{Q} \) & \( \mathrm{P} \) \\
(2) & \( \mathrm{R} \) & \( \mathrm{S} \) & \( \mathrm{P} \) & \( \mathrm{Q} \) \\
(3) & \( \mathrm{S} \) & \( \mathrm{R} \) & \( \mathrm{Q} \) & \( \mathrm{P} \) \\
(4) & \( \mathrm{S} \) & \( \mathrm{R} \) & \( \mathrm{P} \) & \( \mathrm{Q} \)
\end{tabular}
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live