Statements: If ' \( q \) ' then ' \( p \) ' \( (q \rightarrow p) \) then match the following lis....
Statements: If ' \( q \) ' then ' \( p \) ' \( (q \rightarrow p) \) then match the following lists.
\begin{tabular}{|l|l|l|l|}
\hline & List-I & & List -II \\
\hline (A) & \begin{tabular}{l}
Converse of the \\
above statement is
\end{tabular} & (P) & \( \sim q \rightarrow \sim p \) \\
\hline (B) & \begin{tabular}{l}
Inverse of the above \\
statement is
\end{tabular} & (Q) & \( \sim p \rightarrow \sim q \) \\
\hline (C) & \begin{tabular}{l}
Contrapositive of \\
the above \\
statements is
\end{tabular} & (R) & \( p \rightarrow q \) \\
\hline
\end{tabular}
\begin{tabular}{llll}
& \( \mathbf{A} \) & \( \mathbf{B} \) & \( \mathbf{C} \) \\
(1) & \( \mathrm{P} \) & \( \mathrm{Q} \) & \( \mathrm{R} \) \\
(2) & \( \mathrm{R} \) & \( \mathrm{Q} \) & \( \mathrm{P} \) \\
(3) & \( \mathrm{R} \) & \( \mathrm{P} \) & \( \mathrm{Q} \)
\end{tabular}
(4) None of these
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live