Match the items of column-I with those of column-II.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{ Column-I } & \multicolumn{2}{|c|}{ Column-I } \\
\hline (A) & \begin{tabular}{l}
If two fair dice are rolled, \\
then the probability of sum \\
of the faces is 7 is
\end{tabular} & (P) & \( \frac{1}{4} \) \\
\hline (B) & \begin{tabular}{l}
If a card is picked from a \\
deck of 52 playing cards, \\
then the probability of \\
getting a red card is
\end{tabular} & (Q) & \( \frac{1}{2} \) \\
\hline (C) & \begin{tabular}{l}
\( P(x) \) is a polynomial \\
satisfying the relation \( P(x) \) \\
\( +P(2 x)=5 x^{2}-18 \) for all \\
real \( x \). Now, each \\
coefficient \( a, b \) and \( c \) of the \\
quadratic expression \( a x^{2}+ \) \\
\( b x+c \) is one of the roots of \\
the equation \( P(x)=0 \). The \\
probability that \( a x^{2}+b x+c \) \\
\( =0 \) has real roots is
\end{tabular} & (R) & \( \frac{3}{8} \) \\
\hline (D) & \begin{tabular}{l}
In class X of a school \( 75 \% \) \\
are boys and \( 25 \% \) are girls. \\
Probability of boy getting \\
first class is \( 1 / 3 \) while girl \\
getting first class is \( 1 / 2 \). If \\
one candidate is selected at \\
random, the probability of \\
the candidate getting first
\end{tabular} & (S) & \( \frac{1}{6} \) \\
\hline
\end{tabular}
(4) \( \mathrm{A}-\mathrm{S} ; \mathrm{B}-\mathrm{Q} ; \mathrm{C}-\mathrm{Q} ; \mathrm{D}-\mathrm{R} \)
(1) A-P; B-Q; C-R; D-S
(2) A-P; B-S; C-R; D-Q
(3) A-Q; B-S; C-R; D-P