Match the statement in Column-I with the values in Column-II \begin{tabular}{|c|c|c|c|} \hline \....
Match the statement in Column-I with the values in
Column-II
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{ Column-I } & \multicolumn{2}{|c|}{ Column-II } \\
\hline (A) & \begin{tabular}{l}
A line from the \begin{tabular}{l}
origin \\
meets \\
the
\end{tabular} \\
\( \frac{x-2}{1}=\frac{y-1}{-2}=\frac{z+1}{1} \) and \\
\( \frac{x-\frac{8}{3}}{2}=\frac{y+3}{-1}=\frac{z-1}{1} \) at \( P \) \\
and \( Q \) respectively. If \\
length \( P Q=d \), then \( d^{2} \) is
\end{tabular} & (P) & -4 \\
\hline (B) & \begin{tabular}{l}
The values of \( x \) satisfying \\
\( \tan ^{-1}(x+3)-\tan ^{-1}(x-3) \) \\
\( =\sin ^{-1}\left(\frac{3}{5}\right) \) are
\end{tabular} & (Q) & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline (C) & \begin{tabular}{l}
Non-zero vectors \( \vec{a}, \vec{b} \) and \\
\( \vec{c} \quad \) satisfy \( \quad \vec{a} \cdot \vec{b}=0 \) \\
\( (\vec{b}-\vec{a}) \cdot(\vec{b}+\vec{c})=0 \quad \) and \\
\( 2|\vec{b}+\vec{c}|=|\vec{b}-\vec{a}| \cdot \hat{\jmath}_{\mu=2} a=\mu b+4 c \)
\end{tabular} & (R) & 4 \\
\hline (D) & \begin{tabular}{l}
Let \( f \) be the function on \\
{\( [-\pi, \pi] \) given by \( f(0)=9 \)} \\
and \\
\( f(x)=\sin \left(\frac{9 x}{2}\right) / \sin \left(\frac{x}{2}\right) \) \\
for \( x \neq 0 \). The value of \\
\( \frac{2}{\pi} \int_{-\pi}^{\pi} f(x) d x \) is
\end{tabular} & (S) & 5 \\
\hline & \( x \) & (T) & 6 \\
\hline
\end{tabular}
\begin{tabular}{lllll}
& A & B & C & D \\
(1) & \( \mathrm{T} \) & \( \mathrm{P}, \mathrm{R} \) & \( \mathrm{Q}, \mathrm{S} \) & \( \mathrm{R} \) \\
(2) & \( \mathrm{R} \) & \( \mathrm{P} \) & \( \mathrm{Q}, \mathrm{S} \) & \( \mathrm{R} \) \\
(3) & \( \mathrm{T} \) & \( \mathrm{P}, \mathrm{R} \) & \( \mathrm{Q} \) & \( \mathrm{R} \) \\
(4) & \( \mathrm{T} \) & \( \mathrm{R} \) & \( \mathrm{Q}, \mathrm{S} \) & \( \mathrm{R} \)
\end{tabular}
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Other Statistics
Counter-Strike: Source Statistics For PW Solutions
There are 30,471 views in 1,724 videos for Counter-Strike: Source. His channel uploaded over 5 days worth of Counter-Strike: Source videos, less than 0.53% of the total video content that PW Solutions has uploaded to YouTube.