MIT 6.S091: Introduction to Deep Reinforcement Learning (Deep RL)

Channel:
Subscribers:
4,820,000
Published on ● Video Link: https://www.youtube.com/watch?v=zR11FLZ-O9M



Duration: 1:07:30
262,012 views
5,265


First lecture of MIT course 6.S091: Deep Reinforcement Learning, introducing the fascinating field of Deep RL. For more lecture videos on deep learning, reinforcement learning (RL), artificial intelligence (AI & AGI), and podcast conversations, visit our website or follow TensorFlow code tutorials on our GitHub repo.

INFO:
Website: https://deeplearning.mit.edu
GitHub: https://github.com/lexfridman/mit-deep-learning
Slides: http://bit.ly/2HtcoHV
Playlist: http://bit.ly/deep-learning-playlist

OUTLINE:
0:00 - Introduction
2:14 - Types of learning
6:35 - Reinforcement learning in humans
8:22 - What can be learned from data?
12:15 - Reinforcement learning framework
14:06 - Challenge for RL in real-world applications
15:40 - Component of an RL agent
17:42 - Example: robot in a room
23:05 - AI safety and unintended consequences
26:21 - Examples of RL systems
29:52 - Takeaways for real-world impact
31:25 - 3 types of RL: model-based, value-based, policy-based
35:28 - Q-learning
38:40 - Deep Q-Networks (DQN)
48:00 - Policy Gradient (PG)
50:36 - Advantage Actor-Critic (A2C & A3C)
52:52 - Deep Deterministic Policy Gradient (DDPG)
54:12 - Policy Optimization (TRPO and PPO)
56:03 - AlphaZero
1:00:50 - Deep RL in real-world applications
1:03:09 - Closing the RL simulation gap
1:04:44 - Next step in Deep RL

CONNECT:
- If you enjoyed this video, please subscribe to this channel.
- Twitter: https://twitter.com/lexfridman
- LinkedIn: https://www.linkedin.com/in/lexfridman
- Facebook: https://www.facebook.com/lexfridman
- Instagram: https://www.instagram.com/lexfridman




Other Videos By Lex Fridman


2019-04-18Ian Goodfellow: Generative Adversarial Networks (GANs) | Lex Fridman Podcast #19
2019-04-12Elon Musk: Tesla Autopilot | Lex Fridman Podcast #18
2019-04-03Greg Brockman: OpenAI and AGI | Lex Fridman Podcast #17
2019-03-20Eric Weinstein: Revolutionary Ideas in Science, Math, and Society | Lex Fridman Podcast #16
2019-03-12Leslie Kaelbling: Reinforcement Learning, Planning, and Robotics | Lex Fridman Podcast #15
2019-02-26Karl Iagnemma & Oscar Beijbom (Aptiv Autonomous Mobility) - MIT Self-Driving Cars
2019-02-18Oliver Cameron (CEO, Voyage) - MIT Self-Driving Cars
2019-02-12Drago Anguelov (Waymo) - MIT Self-Driving Cars
2019-02-07Kyle Vogt: Cruise Automation | Lex Fridman Podcast #14
2019-02-01Self-Driving Cars: State of the Art (2019)
2019-01-24MIT 6.S091: Introduction to Deep Reinforcement Learning (Deep RL)
2019-01-19Tomaso Poggio: Brains, Minds, and Machines | Lex Fridman Podcast #13
2019-01-17Deep Learning State of the Art (2019) - MIT
2019-01-11Deep Learning Basics: Introduction and Overview
2018-12-28Tuomas Sandholm: Poker and Game Theory | Lex Fridman Podcast #12
2018-12-23Juergen Schmidhuber: Godel Machines, Meta-Learning, and LSTMs | Lex Fridman Podcast #11
2018-12-16Pieter Abbeel: Deep Reinforcement Learning | Lex Fridman Podcast #10
2018-12-09Stuart Russell: Long-Term Future of Artificial Intelligence | Lex Fridman Podcast #9
2018-12-04Eric Schmidt: Google | Lex Fridman Podcast #8
2018-11-29Jeff Atwood: Stack Overflow and Coding Horror | Lex Fridman Podcast #7
2018-11-22Guido van Rossum: Python | Lex Fridman Podcast #6



Tags:
introduction
basics
mit
deep rl
ai
deep learning
machine learning
reinforcement learning
robotics
tensorflow
github
alphazero
alphago
dqn
policy
ai safety
openai
deepmind
simulation
tutorial
model-based
value-based
policy optimization
lex
lex mit