On using elementary row operation \( R_{1} \rightarrow R_{1}-3 R_{2...
On using elementary row operation \( R_{1} \rightarrow R_{1}-3 R_{2} \) in the following matrix equation:
\( \left[\begin{array}{ll}4 & 2 \\ 3 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right] \), we have :
P
W
(A) \( \left[\begin{array}{cc}-5 & -7 \\ 3 & 3\end{array}\right]=\left[\begin{array}{cc}1 & -7 \\ 0 & 3\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right] \)
(B) \( \left[\begin{array}{cc}-5 & -7 \\ 3 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]\left[\begin{array}{cc}-1 & -3 \\ 1 & 1\end{array}\right] \)
(C) \( \left[\begin{array}{cc}-5 & -7 \\ 3 & 3\end{array}\right]=\left[\begin{array}{cc}1 & 2 \\ 1 & -7\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right] \)
(D) \( \left[\begin{array}{cc}4 & 2 \\ -5 & -7\end{array}\right]=\left[\begin{array}{cc}1 & 2 \\ -3 & -3\end{array}\right]\left[\begin{array}{cc}2 & 0 \\ 1 & 1\end{array}\right] \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live