\( P Q \) is a double ordinate of the parabola \( y^{2}=4 x \). If the normal at \( P \) meets t....

Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=q11_prAjiwo



Duration: 8:59
1 views
0


\( P Q \) is a double ordinate of the parabola \( y^{2}=4 x \). If the
\( \mathrm{P} \)
normal at \( P \) meets the line passing through \( \mathrm{Q} \) and parallel to axis at \( G \), then the locus of \( G \) is a parabola. For this parabola, match the items of Column I with those of Column II.
\begin{tabular}{|c|l|c|c|}
\hline \multicolumn{2}{|c|}{ Column - I } & \multicolumn{2}{c|}{ Column - II } \\
\hline \( \mathbf{A} \) & \begin{tabular}{l}
Length of the latus rectum of \\
the locus of \( G \)
\end{tabular} & \( \mathbf{P} \) & 5 \\
\hline \( \mathbf{B} \) & Abscissa of the vertex & \( \mathbf{Q} \) & 3 \\
\hline \( \mathbf{C} \) & Abscissa of the focus & \( \mathbf{R} \) & 4 \\
\hline \( \mathbf{D} \) & \begin{tabular}{l}
The directrix is \( x=a \) where \( a \) \\
is equal to
\end{tabular} & \( \mathbf{S} \) & 6 \\
\hline
\end{tabular}
(1) (A-R); (B-R); (C-P); (D-Q)
(2) \( (\mathrm{A}-\mathrm{R}) ;(\mathrm{B}-\mathrm{P}) ;(\mathrm{C}-\mathrm{S}) ;(\mathrm{D}-\mathrm{Q}) \)
(3) (A-Q); (B-R); (C-S); (D-P)
(4) \( (\mathrm{A}-\mathrm{P}) ;(\mathrm{B}-\mathrm{P}) ;(\mathrm{C}-\mathrm{R}) ;(\mathrm{D}-\mathrm{Q}) \)
.


📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live




Other Videos By PW Solutions


2024-01-21The ellipse is such that it has a the least area but contains the circle \( (x-1)^{2}+y^{2}=1 \)....
2024-01-21If the ellipse \( \frac{x^{2}}{a^{2}-7}+\frac{y^{2}}{13-5 a}=1 \) is inscribed in a square of si....
2024-01-21The ratio of the greatest and least focal distances of a point on the ellipse \( 4 x^{2}+9 y^{2}....
2024-01-21If \( P \) be any point on ellipse \( 3 x^{2}+4 y^{2}=12 \). If \( S \) and \( S^{2} \) are its ....
2024-01-21The eccentricity of an ellipse centre is at the origin is \( \frac{1}{2} \). If one of its direc....
2024-01-21If \( (\sqrt{3}) b x+a y=2 a b \) touches the ellipse \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}....
2024-01-21If from a point \( P \), tangents \( P Q \) and \( P R \) are drawn to the ellipse \( \frac{x^{2....
2024-01-21Match the items of Column I with those of Column II. \begin{tabular}{|l|l|c|c|} \hline \multicol....
2024-01-21Equation of the line passing through the points of intersection of the parabola \( x^{2}=8 y \) ....
2024-01-21If the equation \( (5 x-1)^{2}+(5 y-1)^{2}=\left(\lambda^{2}-2 \lambda+1\right) \) \( (3 x+4 y-1....
2024-01-21\( P Q \) is a double ordinate of the parabola \( y^{2}=4 x \). If the normal at \( P \) meets t....
2024-01-21In an ellipse, the distance between its foci is 6 and minor axis is 8 . Then its eccentricity is....
2024-01-21The number of points at which the parabola \( y^{2}=4 \mathrm{x} \) and the circle \( x^{2}+y^{2....
2024-01-21If any tangent to the ellipse \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \) intercepts equal l....
2024-01-21If \( 3 x+4 y=12 \sqrt{2} \) is a tangent to the ellipse \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{9}=....
2024-01-21If the eccentricity of the ellipse \( \frac{x^{2}}{a^{2}+1}+\frac{y^{2}}{a^{2}+2}=1 \) is \( \fr....
2024-01-21An ellipse is inscribed in a rectangle and the angle between the diagonals of the rectangle is \....
2024-01-21The locus of the midpoints of the chord of the parabola \( 2 y^{2}=7 x \) which are parallel to ....
2024-01-21If \( (3,4) \) and \( (5,12) \) are the foci of an ellipse passing through the origin then the e....
2024-01-21The tangent \( P T \) and the normal \( P N \) to the parabola \( y^{2}=4 a x \) at a point \( P....
2024-01-21Consider the circle \( x^{2}+y^{2}=9 \) and the parabola \( y^{2}=8 x \). They intersect at \( P....