\( P Q \) is a double ordinate of the parabola \( y^{2}=4 x \). If the normal at \( P \) meets t....
\( P Q \) is a double ordinate of the parabola \( y^{2}=4 x \). If the
\( \mathrm{P} \)
normal at \( P \) meets the line passing through \( \mathrm{Q} \) and parallel to axis at \( G \), then the locus of \( G \) is a parabola. For this parabola, match the items of Column I with those of Column II.
\begin{tabular}{|c|l|c|c|}
\hline \multicolumn{2}{|c|}{ Column - I } & \multicolumn{2}{c|}{ Column - II } \\
\hline \( \mathbf{A} \) & \begin{tabular}{l}
Length of the latus rectum of \\
the locus of \( G \)
\end{tabular} & \( \mathbf{P} \) & 5 \\
\hline \( \mathbf{B} \) & Abscissa of the vertex & \( \mathbf{Q} \) & 3 \\
\hline \( \mathbf{C} \) & Abscissa of the focus & \( \mathbf{R} \) & 4 \\
\hline \( \mathbf{D} \) & \begin{tabular}{l}
The directrix is \( x=a \) where \( a \) \\
is equal to
\end{tabular} & \( \mathbf{S} \) & 6 \\
\hline
\end{tabular}
(1) (A-R); (B-R); (C-P); (D-Q)
(2) \( (\mathrm{A}-\mathrm{R}) ;(\mathrm{B}-\mathrm{P}) ;(\mathrm{C}-\mathrm{S}) ;(\mathrm{D}-\mathrm{Q}) \)
(3) (A-Q); (B-R); (C-S); (D-P)
(4) \( (\mathrm{A}-\mathrm{P}) ;(\mathrm{B}-\mathrm{P}) ;(\mathrm{C}-\mathrm{R}) ;(\mathrm{D}-\mathrm{Q}) \)
.
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live