Position vector (with respect to centre) velocity vector and acceleration vector of a particle i....
Position vector (with respect to centre) velocity vector and acceleration vector of a particle in circular motion are \( \vec{r}=(3 \hat{i}-4 \hat{j}) \mathrm{m}, \vec{v}=(4 \hat{i}+3 \hat{j}) \mathrm{ms}^{-1} \) and \( \vec{a}=(-6 \hat{i}+b \hat{j}) m s^{-2} \). Speed of particle is constant.
Match the following two columns.
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{c|}{ Column-II (SI units) } \\
\hline (a) & Value of angular velocity & (p) & 1 \\
\hline (b) & Value of \( b \) & (q) & 8 \\
\hline (c) & Radius of circle & (r) & 5 \\
\hline (d) & \( \vec{r} .(\vec{v} \times \vec{a}) \) & (s) & None \\
\hline
\end{tabular}
(1) (a) \( \rightarrow \) (q) (b) \( \rightarrow \) (r) (c) \( \rightarrow \) (s) (d) \( \rightarrow \) (p)
(2) (a) \( \rightarrow \) (p) (b) \( \rightarrow \) (q) (c) \( \rightarrow \) (r) (d) \( \rightarrow \) (s)
(3) (a) \( \rightarrow \) (s) (b) \( \rightarrow \) (r) (c) \( \rightarrow \) (p) (d) \( \rightarrow \) (q)
(4) (a) \( \rightarrow \) (q) (b) \( \rightarrow \) (p) (c) \( \rightarrow \) (r) (d) \( \rightarrow \) (s)
๐ฒPW App Link - https://bit.ly/YTAI_PWAP
๐PW Website - https://www.pw.live
Other Videos By PW Solutions
Other Statistics
Vector Statistics For PW Solutions
There are 87 views in 21 videos for Vector. His channel uploaded an hours worth of Vector videos, less than 0.01% of the total video content that PW Solutions has uploaded to YouTube.