Show that the set \( A=\{-1,0,1\} \) is not closed for addition.
P
W
Show that the set \( A=\{-1,0,1\} \) is not closed for addition.
P
W
📲 PW App Link - https://bit.ly/YTAI_PWAP
🌐 PW Website - https://www.pw.live/
Other Videos By PW Solutions
2023-02-25 | For all \( a, b \in R \), we define \( a * b=|a-b| \).
\( \mathrm{P... |
2023-02-25 | Let \( f(x)=\frac{\sin ^{-1} x}{x} \cdot \) Then, \( \operatorname{... |
2023-02-25 | Calculate \( K_{p} \) for,
\[
1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{H}_{2} \rightleftharpoons \mat... |
2023-02-25 | For all \( a, b \in N \), we define \( a * b=a^{3}+b^{3} \).
P Show... |
2023-02-25 | To solve a trigonometric inequation of the type \( \sin x \geq a \)... |
2023-02-25 | Let \( Q^{+} \)be the set of all positive rational numbers.
\( \mat... |
2023-02-25 | Show that \( * \) on \( R-\{-1\} \), defined by \( (a * b)=\frac{a}... |
2023-02-25 | Let \( f(x)=\cos ^{-1}(3 x-1) \). Then, \( \operatorname{dom}(f)=? ... |
2023-02-25 | Let * be a binary operation on \( N \), defined by \( a * b=a^{b} \... |
2023-02-25 | Let \( a * b=\operatorname{lcm}(a, b) \) for all values of \( a, b ... |
2023-02-25 | Show that the set \( A=\{-1,0,1\} \) is not closed for addition.
P
W |
2023-02-25 | Let \( Q^{+} \)be the set of all positive rational numbers.
Show th... |
2023-02-25 | Let \( a * b=\operatorname{lcm}(a, b) \) for all values of \( a, b ... |
2023-02-25 | Let \( a * b=\operatorname{lcm}(a, b) \) for all values of \( a, b ... |
2023-02-25 | Let \( f(x)=\sqrt{\log \left(2 x-x^{2}\right)} \). Then, \( \operat... |
2023-02-25 | Let \( a * b=\operatorname{lcm}(a, b) \) for all values of \( a, b ... |
2023-02-25 | If \( * \) be the binary operation on the set \( Z \) of all intege... |
2023-02-25 | Let \( *: R \times R \rightarrow R \) be a binary operation given b... |
2023-02-25 | Assertion (A): विद्युत्-चुंबकीय स्पेक्ट्रम में, लगभग \( 10^{15} \mathrm{~Hz} \) का छोटा सा भाग द... |
2023-02-25 | Let \( * \) be a binary operation on the set of all nonzero real nu... |
2023-02-25 | Let \( * \) be a binary operation on the set \( Q \) of all rationa... |