Sum of four consecutive powers of \( i \) (iota) is zero. i.e., \( ...
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=_aiEOs2eYek
Sum of four consecutive powers of \( i \) (iota) is zero. i.e., \( i^{n}+i^{n+1}+i^{n+2}+i^{n+3}=0, \forall n \in I \).
\( \mathrm{P} \)
If \( \sum_{r=4}^{100} i^{r !}+\prod_{r=1}^{101} i^{r}=a+i b \), where \( i=\sqrt{-1} \), then \( a+75 b \), is
W
(a) 11
(b) 22
(c) 33
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw