Sum of four consecutive powers of \( i \) (iota) is zero. i.e., \( ...
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=bk21XeEsHWw
Sum of four consecutive powers of \( i \) (iota) is zero. i.e., \( i^{n}+i^{n+1}+i^{n+2}+i^{n+3}=0, \forall n \in I \).
\( \mathrm{P} \)
If \( \sum_{n=1}^{25} i^{n !}=a+i b \), where \( i=\sqrt{-1} \), then \( a-b \), is
W
(a) prime number
(b) even number
(c) composite number
(d) perfect number
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw