The integral \( \int_{0}^{\pi} x f(\sin x) \mathrm{d} x \) is equal...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=wI1wii8V14U
The integral \( \int_{0}^{\pi} x f(\sin x) \mathrm{d} x \) is equal to
(a) \( \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) d x \)
(b) \( \frac{\pi}{4} \int_{0}^{\pi} f(\sin x) d x \)
(c) \( \pi \int_{0}^{\pi / 2} f(\sin x) d x \)
(d) \( \pi \int_{0}^{\pi / 2} f(\cos x) d x \)
\( \mathrm{W} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw