The magnitudes of enthalpy changes for irreversible adiabatic expansion of a gas from \( 1 \mathrm{~L} \) to \( 2 \mathrm{~L} \) is \( \Delta \mathrm{H}_{1} \) and for reversible adiabatic expansion for the same expansion is \( \Delta \mathrm{H}_{2} \). Then:
(a) \( \Delta \mathrm{H}_{1}\Delta \mathrm{H}_{2} \)
(b) \( \Delta \mathrm{H}_{1}\Delta \mathrm{H}_{2} \)
(c) \( \Delta \mathrm{H}_{1}=\Delta \mathrm{H}_{2} \), enthalpy being a state function \( \left(\Delta \mathrm{H}_{1}=\Delta \mathrm{H}_{2}\right) \)
(d) \( \Delta \mathrm{H}_{1}=\Delta \mathrm{E}_{1} \& \Delta \mathrm{H}_{2}=\Delta \mathrm{E}_{2} \) where \( \Delta \mathrm{E}_{1} \& \Delta \mathrm{E}_{2} \) are magnitudes of change in internal energy of gas in these expansions respectively.
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live