The tangents to \( x^{2}+y^{2}=a^{2} \) having inclinations \( \alp...
Channel:
Subscribers:
453,000
Published on ● Video Link: https://www.youtube.com/watch?v=aswWwTE1bwY
The tangents to \( x^{2}+y^{2}=a^{2} \) having inclinations \( \alpha \) and \( \beta \) intersect at \( P \). If \( \cot \alpha \) \( +\cot \beta=0 \), then the locus of \( P \) is
\( \mathrm{P} \)
(A) \( x+y=0 \)
(B) \( x-y=0 \)
W
(C) \( x y=0 \)
(D) None of these.
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw