The value of \( \lim _{n \rightarrow \infty} \sum_{K=1}^{n} \log \left(1+\frac{K}{n}\right)^{1 /...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=UP1AF0bpF5w
The value of \( \lim _{n \rightarrow \infty} \sum_{K=1}^{n} \log \left(1+\frac{K}{n}\right)^{1 / n} \) is
(a) \( \log _{\theta}\left(\frac{e}{4}\right) \)
(b) \( \log _{\theta}\left(\frac{4}{e}\right) \)
(c) \( \log _{\theta} 4 \)
(d) None of these
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw