Two particles \( A \) and \( B \) move with constant velocity \( \o...
Two particles \( A \) and \( B \) move with constant velocity \( \overrightarrow{v_{1}} \) and \( \overrightarrow{v_{2}} \) along two mutually perpendicular straight lines towards intersection point \( O \) as shown in figure. At moment \( t=0 \) particles were located at distance \( l_{1} \) and \( l_{2} \) respectively from \( O \). Then minimum distance between the particles and time taken are respectively.
(1) \( \frac{\left|l_{1} v_{2}-l_{2} v_{1}\right|}{\sqrt{v_{1}^{2}+v_{2}^{2}}}, \frac{l_{1} v_{1}+l_{2} v_{2}}{v_{1}^{2}+v_{2}^{2}} \)
(2) \( \frac{\left|l_{1} v_{1}-l_{2} v_{2}\right|}{\sqrt{v_{1}^{2}+v_{2}^{2}}}, \frac{l_{1} v_{2}+l_{2} v_{1}}{v_{1}^{2}+v_{2}^{2}} \)
(3) \( \frac{\left|l_{1} v_{2}-l_{2} v_{1}\right|}{\sqrt{v_{1}^{2}+v_{2}^{2}}} \sqrt{\frac{l_{1}}{l_{2}}}, \frac{\left(l_{1} v_{1}+l_{2} v_{2}\right) l_{1}}{\left(v_{1}^{2}+v_{2}^{2}\right) l_{2}} \)
(4) \( \frac{\left|l_{1} v_{2}-l_{2} v_{1}\right|}{\sqrt{v_{1}^{2}+v_{2}^{2}}} \sqrt{\frac{l_{1}}{l_{2}}}, \frac{\left(l_{1} v_{1}+l_{2} v_{2}\right) l_{2}}{\left(v_{1}^{2}+v_{2}^{2}\right) l_{1}} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live