Vector \( \hat{a} \) in the plane of \( \vec{b}=2 \hat{i}+\hat{j} \) and \( \vec{c}=\hat{i}-\hat...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=OUMbkfJGoPY
Vector \( \hat{a} \) in the plane of \( \vec{b}=2 \hat{i}+\hat{j} \) and \( \vec{c}=\hat{i}-\hat{j}+\hat{k} \) is such that it is equally inclined to \( \vec{b} \) and \( \vec{d} \) where \( \vec{d}=\hat{j}+2 \hat{k} \). The value of \( \hat{a} \) is
(A) \( \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}} \)
(B) \( \frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}} \)
(C) \( \frac{2 \hat{i}+\hat{j}}{\sqrt{5}} \)
(D) \( \frac{2 \hat{i}+\hat{j}}{\sqrt{5}} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live