Warehouse-Scale Video Acceleration: Co-Design and Deployment in the Wild

Subscribers:
348,000
Published on ● Video Link: https://www.youtube.com/watch?v=vdXCVuY2CJs



Duration: 20:13
1,654 views
44


A Google TechTalk, presented by Parthasarathy Ranganathan et al., 2021/04/21
Presented at ASPLOS '21 https://asplos-conference.org/2021/index.html
Paper Abstract: Video sharing (e.g., YouTube, Vimeo, Facebook, TikTok) accounts for the majority of internet traffic, and video processing is also foundational to several other key workloads (video conferencing, virtual/augmented reality, cloud gaming, video in Internet-of-Things devices, etc.). The importance of these workloads motivates larger video processing infrastructures and – with the slowing of Moore’s law – specialized hardware accelerators to deliver more computing at higher efficiencies.

This paper describes the design and deployment, at scale, of a new accelerator targeted at warehouse-scale video transcoding. We present our hardware design including a new accelerator building block – the video coding unit (VCU) – and discuss key design trade-offs for balanced systems at data center scale and co-designing accelerators with large-scale distributed software systems. We evaluate these accelerators “in the wild"" serving live data center jobs, demonstrating 20-33x improved efficiency over our prior well-tuned non-accelerated baseline. Our design also enables effective adaptation to changing bottlenecks and improved failure management, and new workload capabilities not otherwise possible with prior systems. To the best of our knowledge, this is the first work to discuss video acceleration at scale in large warehouse-scale environments."

Paper link: http://goo.gle/vcu
Blog Post: https://blog.youtube/inside-youtube/new-era-video-infrastructure/

Video Speakers:
Parthasarathy (Partha) Ranganathan
Jeff Calow
Clint Smullen
Jeremy Dorfman
Marisabel Guevara
Danner Stodolsky




Other Videos By Google TechTalks


2022-02-08Academic Keynote: Systems Support for Federated Computation, Mosharaf Chowdhury (U of Michigan)
2022-02-08Day 2 Lightning Talks: Privacy & Security
2022-02-08Google Keynote: Federated Learning & Federated Analytics-Research, Applications, & System Challenges
2022-02-08Academic Keynote: Differentially Private Covariance-Adaptive Mean Estimation, Adam Smith (BU)
2022-02-08Academic Keynote: Mean Estimation with User-level Privacy under Data Heterogeneity, Rachel Cummings
2022-02-08Day 1 Lightning Talks: Federated Optimization and Analytics
2022-02-08Day 1 Lightning Talks: Privacy & Security
2022-02-08Academic Keynote: Federated Learning with Strange Gradients, Martin Jaggi (EPFL)
2022-02-08Google Keynote: Federated Aggregation and Privacy
2022-02-08Welcome and Opening Remarks
2022-01-25Warehouse-Scale Video Acceleration: Co-Design and Deployment in the Wild
2022-01-06What Could Be the Data-Structures of the Mind?
2021-12-21Differential Privacy and the 2020 Census in the United States
2021-12-21Covariance-Aware Private Mean Estimation Without Private Covariance Estimation
2021-12-21Private Histograms in the Shuffle Model
2021-12-14The Platform Design Problem
2021-11-19Reducing Polarization and Increasing Diverse Navigability in Graphs
2021-10-12Near-Optimal Experimental Design for Networks: Independent Block Randomization
2021-10-06Greybeard Qualification (Linux Internals) part 1: Process Structure and IPC
2021-10-06Greybeard Qualification (Linux Internals) part 3: Memory Management
2021-10-06Greybeard Qualification (Linux Internals) part 2 Execution, Scheduling, Processes & Threads