A ball is projected from the ground with velocity \( v \) such that its range is maximum. \begin...
A ball is projected from the ground with velocity \( v \) such that its range is maximum.
\begin{tabular}{|l|l|c|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{c|}{ Column-II } \\
\hline A. & \( \begin{array}{l}\text { Velocity at half of the } \\
\text { maximum height }\end{array} \) & p. & \( \frac{\sqrt{3} v}{2} \) \\
\hline B. & \( \begin{array}{l}\text { Velocity at the maximum } \\
\text { height }\end{array} \) & q. & \( \frac{v}{\sqrt{2}} \) \\
\hline C. & \( \begin{array}{l}\text { Change in its velocity when } \\
\text { it returns to the ground }\end{array} \) & r. & \( v \sqrt{2} \) \\
\hline D. & \( \begin{array}{l}\text { Average velocity when it } \\
\text { reaches the maximum height }\end{array} \) & s. & \( \frac{v}{2} \sqrt{\frac{5}{2}} \) \\
\hline
\end{tabular}
(1) A-(p); B-(q); C-(r); D-(s)
(2) A-(s); B-(p); C-(r); D-(q)
(3) A-(q); B-(s); C-(p); D-(r)
(4) A-(r); B-(s); C-(p); D-(q)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live