A charge \( q \) is moving with a velocity \( \mathbf{v}_{1}=1 \hat{\mathbf{i}} \mathrm{m} / \ma...
A charge \( q \) is moving with a velocity \( \mathbf{v}_{1}=1 \hat{\mathbf{i}} \mathrm{m} / \mathrm{s} \) at a point in a magnetic field and experiences a force \( \mathbf{F}=q[-\hat{\mathbf{j}}+1 \hat{\mathbf{k}}] \mathrm{N} \). If the charge is moving with a velocity \( \mathbf{v}_{2}=1 \hat{\mathbf{j}} \mathrm{m} / \mathrm{s} \) at the same point, it experiences a force \( \mathbf{F}_{2}=q(\hat{\mathbf{i}}-1 \hat{\mathbf{k}}) \mathrm{N} \). The magnetic induction \( \mathbf{B} \) at that point is
(a) \( (\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}) \mathrm{Wb} / \mathrm{m}^{2} \)
(b) \( (\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}) \mathrm{Wb} / \mathrm{m}^{2} \)
(c) \( (-\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}) \mathrm{Wb} / \mathrm{m}^{2} \)
(d) \( (\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}) \mathrm{Wb} / \mathrm{m}^{2} \)
\( P \)
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live