A charged shell of radius \( R \) carries a total charge \( Q \). Given \( \Phi \) as the flux o...
A charged shell of radius \( R \) carries a total charge \( Q \).
Given \( \Phi \) as the flux of electric field through a closed
cylindrical surface of height \( h \), radius \( \mathbf{r} \) and with its
center same as that of the shell. Here, center of the
cylinder is a point on the axis of the cylinder which is
equidistant from its top and bottom surfaces. Which
of the following option(s) is/are correct ? \( \left[\epsilon_{0}\right. \) is the
permittivity of free space]
(A) If \( h>2 R \) and \( r>R \) then \( \Phi=\frac{Q}{\epsilon_{0}} \)
(B) If \( \mathrm{h}<\frac{8 \mathrm{R}}{5} \) and \( \mathrm{r}=\frac{3 \mathrm{R}}{5} \) then \( \Phi=0 \)
(C) If \( h>2 R \) and \( r=\frac{4 R}{5} \) then \( \Phi=\frac{Q}{5 \epsilon_{0}} \)
(D) If \( h>2 R \) and \( r=\frac{3 R}{5} \) then \( \Phi=\frac{Q}{5 \epsilon_{0}} \)
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live