A differentiable function satisfy the relation \( \ln (f(x+y))=\ln (f(x)) . \ln (f(y)) \forall x....
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=z1dQkoJoF5c
A differentiable function satisfy the relation \( \ln (f(x+y))=\ln (f(x)) . \ln (f(y)) \forall x, y \in R, f(0) \neq 1 \),
\( \mathrm{P} \)
\( f^{\prime}(0)=\mathrm{e} \) and \( g \) be the inverse of \( f \).
The value of \( g^{\prime \prime}(e) \) is equal to :
(1) \( -\frac{2}{e^{2}} \)
(2) \( -\frac{1}{2 e^{2}} \)
(3) \( -2 \mathrm{e}^{2} \)
(4) \( -\frac{2}{e^{3}} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live