A Global Comparison of COVID-19 Variant Waves and Relationships with Clinical and...

Published on ● Video Link: https://www.youtube.com/watch?v=ZoIMN8Ru7ak



Duration: 55:45
355 views
0


Sara del Valle (Los Alamos National Laboratory) presenting Virtually
https://simons.berkeley.edu/talks/global-comparison-covid-19-variant-waves-and-relationships-clinical-and-demographic-factors
Epidemics and Information Diffusion

The ongoing COVID-19 pandemic has had devastating impacts on global public health and socioeconomic stability. Although highly efficacious COVID-19 vaccines were developed at an unprecedented rate, the ongoing evolution of SARS-CoV-2 and consequential changes in infectivity and immunological resistance of new variants continues to present challenges. Computing the growth rates of emerging variants is complicated by many issues, including vaccine uptake, regional levels of prior infection, viral resistance to protective antibodies, and the relative infectivity of new variants in complex populations. While epidemic forecasting has played an important role in decision-making, forecast accuracy has been limited, especially at key tipping points in the pandemic, by the inability to incorporate important factors, such as the emergence of phenotypically novel variants. In this talk, I will describe a flexible strategy to characterize variant transition dynamics through three simple summaries, the speed, the relative timing, and the magnitude of the variant transition. This foundational research is intended to better understand the implication of SARS-CoV-2 evolution to ultimately inform regional epidemiological forecasting.




Other Videos By Simons Institute for the Theory of Computing


2022-11-09Algorithmic Challenges in Ensuring Fairness at the Time of Decision
2022-11-09Improving Refugee Resettlement
2022-11-09Learning to Predict Arbitrary Quantum Processes
2022-11-09A Kerfuffle: Differential Privacy and the 2020 Census
2022-11-08Chasing the Long Tail: What Neural Networks Memorize and Why
2022-11-08Concurrent Composition Theorems for all Standard Variants of Differential Privacy
2022-11-08Privacy Management: Achieving the Possimpible
2022-11-07Privacy-safe Measurement on the Web: Open Questions From the Privacy Sandbox
2022-10-29Transmission Neural Networks: From Virus Spread Models to Neural Networks
2022-10-29Spatial Spread of Dengue Virus: Appropriate Spatial Scales for Transmission
2022-10-28A Global Comparison of COVID-19 Variant Waves and Relationships with Clinical and...
2022-10-28Diversity and Inequality in Information Diffusion on Social Networks
2022-10-28Learning through the Grapevine and the Impact of the Breadth and Depth of Social Networks
2022-10-28Just a Few Seeds More: The Inflated Value of Network Data for Diffusion...
2022-10-27Bayesian Learning in Social Networks
2022-10-27Likelihood-based Inference for Stochastic Epidemic Models
2022-10-27Testing, Voluntary Social Distancing, and the Spread of an Infection
2022-10-27Complex Contagions and Hybrid Phase Transitions
2022-10-26Dynamical Survival Analysis: Survival Models for Epidemic
2022-10-26Between-host, within-host Interactions in Simple Epidemiological Models
2022-10-26The Effect of Restrictive Interactions between Susceptible and Infected Individuals...



Tags:
Simons Institute
theoretical computer science
UC Berkeley
Computer Science
Theory of Computation
Theory of Computing
Epidemics and Information Diffusion
Sara del Valle