Spatial Spread of Dengue Virus: Appropriate Spatial Scales for Transmission

Published on ● Video Link: https://www.youtube.com/watch?v=N7gJYW77KsA



Duration: 1:12:46
322 views
8


Alun L. Lloyd (North Carolina State University)
https://simons.berkeley.edu/talks/spatial-spread-dengue-virus-appropriate-spatial-scales-transmission
Epidemics and Information Diffusion

Dengue virus is the most significant viral mosquito-borne infection in terms of its human impact. Mathematical modeling has contributed to our understanding of its transmission and control strategies aimed at halting its spread. We consider the spread of dengue at the level of a city. Because the Aedes aegypti mosquito that transmits dengue has relatively low dispersal over its lifetime, human movement plays a major role in its spread and the household is a key spatial scale on which transmission occurs. Simple multi-patch deterministic models---metapopulation models, which consider the population to be described as a network of well-mixed patches---have been used to model city-level spatial spread and can provide expressions for key epidemiological quantities such as the basic reproduction number, $R_0$. We compare dynamics predicted by such models with results from individual-based network models and illustrate several discrepancies. We argue that the small size of households and local depletion of susceptibles are key features of the dynamics that are not captured in the standard $R_0$ analysis of the ODE model. In order to gain analytic understanding, we propose the use of household-level models, which can be analyzed using branching process theory. Our work, which echoes results previously found for directly-transmitted infections, highlights the importance of correctly accounting for the relevant spatial scales on which transmission occurs




Other Videos By Simons Institute for the Theory of Computing


2022-11-09Pipeline Interventions
2022-11-09Algorithmic Challenges in Ensuring Fairness at the Time of Decision
2022-11-09Improving Refugee Resettlement
2022-11-09Learning to Predict Arbitrary Quantum Processes
2022-11-09A Kerfuffle: Differential Privacy and the 2020 Census
2022-11-08Chasing the Long Tail: What Neural Networks Memorize and Why
2022-11-08Concurrent Composition Theorems for all Standard Variants of Differential Privacy
2022-11-08Privacy Management: Achieving the Possimpible
2022-11-07Privacy-safe Measurement on the Web: Open Questions From the Privacy Sandbox
2022-10-29Transmission Neural Networks: From Virus Spread Models to Neural Networks
2022-10-29Spatial Spread of Dengue Virus: Appropriate Spatial Scales for Transmission
2022-10-28A Global Comparison of COVID-19 Variant Waves and Relationships with Clinical and...
2022-10-28Diversity and Inequality in Information Diffusion on Social Networks
2022-10-28Learning through the Grapevine and the Impact of the Breadth and Depth of Social Networks
2022-10-28Just a Few Seeds More: The Inflated Value of Network Data for Diffusion...
2022-10-27Bayesian Learning in Social Networks
2022-10-27Likelihood-based Inference for Stochastic Epidemic Models
2022-10-27Testing, Voluntary Social Distancing, and the Spread of an Infection
2022-10-27Complex Contagions and Hybrid Phase Transitions
2022-10-26Dynamical Survival Analysis: Survival Models for Epidemic
2022-10-26Between-host, within-host Interactions in Simple Epidemiological Models



Tags:
Simons Institute
theoretical computer science
UC Berkeley
Computer Science
Theory of Computation
Theory of Computing
Epidemics and Information Diffusion
Alun L. Lloyd