A negatively charged particle of mass ' \( m \) ' having magnitude of charge \( q \) enters a ma...
A negatively charged particle of mass ' \( m \) ' having magnitude of charge \( q \) enters a magnetic field \( \vec{B}=B_{0} \hat{k} \mathrm{~T} \) at point \( P(3 \mathrm{~m}, 0,0) \) with velocity \( \vec{v}_{0}=3 \hat{j}+4 \hat{k} \mathrm{~m} / \mathrm{s} \) at \( t=0 \) as shown in the figure \( \left[\right. \) Given \( \left.\frac{q B_{0}}{m}=1 \mathrm{rad} / \mathrm{s}\right] \) [No other field is present]
Now match the following:
\begin{tabular}{|r|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column I } & \multicolumn{2}{c|}{ Column II } \\
\hline & Pitch of the motion of the particle & a. & \( (-3 \sin t \hat{i}+3 \cos t \hat{j}) \) unit \\
\hline ii. & \( \frac{24 \pi}{25} \times \) Radius of & b. & \( (-3 \cos t \hat{i}-3 \sin t \hat{j}) \) unit \\
& curvature of particle during motion at any time \( t=t \) sec & & \\
\hline iii. & Velocity component of particle in \( x-y \) plane. & c. & \( 8 \pi \) unit \\
\hline iv. & Acceleration particle. & of. & Constant \\
\hline
\end{tabular}
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live