A \( \operatorname{rod} A B \) of uniform cross-section consists of four sections \( A C, C D, D....
A \( \operatorname{rod} A B \) of uniform cross-section consists of four sections \( A C, C D, D E \) and \( E B \) of different metals with thermal conductivities \( K, 0.8 K, 1.2 K \) and \( 1.50 K \), respectively. Their lengths are respectively \( L, 1.2 L \), \( 1.5 L \) and \( 0.6 L \). They are joined rigidly in succession at \( C, D \) and \( E \) to form the \( \operatorname{rod} A B \). The end \( A \) is maintained at \( 100^{\circ} \mathrm{C} \) and the end \( B \) is maintained at \( 0^{\circ} \mathrm{C} \). They steady state temperatures of the joints \( C, D \) and \( E \) are respectively \( T_{C}, T_{D} \) and \( T_{E} \). Column I lists the temperature differences \( \left(T_{A}-T_{C}\right) \), ( \( \left.T_{C}-T_{D}\right) \), \( \left(T_{D}-T_{E}\right) \) and \( \left(T_{E}-T_{B}\right) \) in the four sections and Column II their values jumbled up. Match each item in Column I with its correct value in Column II.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{c|}{ Column-II } \\
\hline (A) & \( \left(T_{A}-T_{\mathrm{C}}\right) \) & (p) & 9.6 \\
\hline (B) & \( \left(T_{C}-T_{D}\right) \) & (q) & 30.1 \\
\hline (C) & \( \left(T_{D}-T_{E}\right) \) & (r) & 24.1 \\
\hline (D) & \( \left(T_{E}-T_{B}\right) \) & (s) & 36.2 \\
\hline
\end{tabular}
(1) (A)-(r); (B)-(p); (C)-(q); (D)-(s)
(2) (A)-(r); (B)-(s); (C)-(q); (D)-(p)
(3) (A)-(q); (B)-(r); (C)-(s); (D)-(p)
(4) (A)-(p); (B)-(q); (C)-(r); (D)-(s)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live