A particle moves along a circle of radius \( \left(\frac{20}{\pi}\right) \mathrm{m} \) with cons....
Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=1OTPJkhrOKs
A particle moves along a circle of radius \( \left(\frac{20}{\pi}\right) \mathrm{m} \)
P
with constant tangential acceleration. If the velocity of the particle is \( 80 \mathrm{~m} / \mathrm{s} \) at the end of the second revolution after motion has begun, the tangential acceleration is
(A) \( 40 \mathrm{~m} / \mathrm{s}^{2} \)
(B) \( 640 \pi \mathrm{m} / \mathrm{s}^{2} \)
(C) \( 160 \pi \mathrm{m} / \mathrm{s}^{2} \)
(D) \( 40 \pi \mathrm{m} / \mathrm{s}^{2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live