The frequency (n) of vibration of a string is given as \( \mathrm{n}=\frac{1}{2 \ell} \sqrt{\fra....
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=xXaxbyNuYFA
The frequency (n) of vibration of a string is given
\( \mathrm{P} \)
as \( \mathrm{n}=\frac{1}{2 \ell} \sqrt{\frac{\mathrm{T}}{\mathrm{m}}} \), where \( \mathrm{T} \) is tension and \( \ell \) is the length of vibrating string, then the dimensional formula for \( \mathrm{m} \) is -
(A) \( \left[\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{1}\right] \)
(B) \( \left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right] \)
(C) \( \left[\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{0}\right] \)
(D) \( \left[\mathrm{ML}^{0} \mathrm{~T}^{0}\right] \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live