- A particle \( P \) moves with constant speed on a circle in anticlockwise direction as shown in figure.
\( \mathrm{P} \)
W
Match Column I with Column II:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Column I } & \multicolumn{1}{|c|}{ Column II } \\
\hline \( \begin{array}{l}\text { i. Angular momentum of the } \\
\text { particle about } O\end{array} \) & \( \begin{array}{l}\text { a. is minimum when the } \\
\text { particle is at } A\end{array} \) \\
\hline \( \begin{array}{l}\text { ii. Angular momentum of the } \\
\text { particle about } E\end{array} \) & \( \begin{array}{l}\text { b. is maximum when the } \\
\text { particle is at } A\end{array} \) \\
\hline \( \begin{array}{l}\text { iii. Angular velocity of the } \\
\text { particle about } O\end{array} \) & c. does not remain constant \\
\hline \( \begin{array}{l}\text { iv. Angular velocity of the } \\
\text { particle about } E\end{array} \) & d. remains constant \\
\hline
\end{tabular}
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live