A refrence particle is moving with uniform angular velocity \( \omega \) on a circle of reference of radius \( a \) with centre at \( \mathrm{O} \). The projection of a uniform circular motion of diameter \( Y Y^{\prime} \) is simple harmonic motion. Time is noted from the instant, the reference particle is at X. Match the displacement in SHM in column I with the phase angle (in rad) of column II.
Column I
Column II
(A) \( y=\frac{a}{2} \)
(P) \( \frac{3 \pi}{4} \)
(B) \( y=\frac{a}{\sqrt{2}} \)
(Q) \( \frac{5 \pi}{6} \)
(C) \( y=-a \frac{\sqrt{3}}{2} \)
(R) \( \frac{5 \pi}{4} \)
(D) \( y=\frac{-a}{\sqrt{2}} \)
(S) \( \frac{4 \pi}{3} \)
(1) A-P, B-Q, C-R, D-S
(2) A-P, B-Q, C-S, D-R
(3) A-Q, B-P, C-R, D-S
(4) A-Q, B-P, C-S, D-R
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live