A sphere is rolling without slipping on a fixed horizontal \( \mathrm{P} \) plane surface. In th...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=PHkp8iAjWH0
A sphere is rolling without slipping on a fixed horizontal
\( \mathrm{P} \) plane surface. In the figure, \( A \) is the point of contact, \( B \) is the
W centre of the sphere and \( C \) is its topmost point. Then,
(1) \( \vec{V}_{C}-\vec{V}_{A}=2\left(\vec{V}_{B}-\vec{V}_{C}\right) \)
(2) \( \vec{V}_{C}-\vec{V}_{A}=\vec{V}_{B}-\vec{V}_{A} \)
(3) \( \left|\vec{V}_{C}-\vec{V}_{A}\right|=2\left|\vec{V}_{B}-\vec{V}_{C}\right| \)
(4) \( \left|\vec{V}_{C}-\vec{V}_{A}\right|=4\left|\vec{V}_{B}\right| \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live