A spherical balloon is filled with \( 4500 \pi \) cubic meters of helium gas. If a leak in the b... VIDEO
A spherical balloon is filled with \( 4500 \pi \) cubic meters of helium gas. If a leak in the balloon causes the gas to escape at the rate of \( 72 \pi \) cubic meters per minute, then the rate (in meters per minute) at which the radius of the balloon decreases 49 minutes after the leakage began is:
(a) \( 6 / 7 \)
(b) \( 4 / 9 \)
(c) \( 2 / 9 \)
(d) \( 9 / 2 \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions 2023-06-08 If \( x0 \), then find greatest value of the expression \( \frac{x^{100}}{1+x+x^{2}+x^{3}+\ldots... 2023-06-08 If \( f:[1,10] \rightarrow[1,10] \) is a non-decreasing function and \( g:[1,10] \rightarrow[1,1... 2023-06-08 Let for a function \( f(x), h(x)=(f(x))^{2}+(f(x))^{3} \) for every real number \( x \). Then
(a... 2023-06-08 Let \( f: \mathrm{R} \rightarrow \mathrm{R} \) be a function such that \( f(x)=a x+3 \sin x+4 \)... 2023-06-08 If \( 3^{x / 2}+2^{x}25 \) then the solution set is
(a) \( R \)
(b) \( (2,+\infty) \)
(c) \( (4,... 2023-06-08 The value of \( a \) for which the function \( f(x)=(4 a-3)(x+\log \) 5) \( +2(a-7) \cot \frac{x... 2023-06-08 A function \( y=f(x) \) is given by \( x=\cos ^{2} \theta \) and \( y=\frac{\cot \theta}{\sec ^{... 2023-06-08 Let \( a \) and \( b \) are positive number. If \( (x, y) \) is a point on the curve \( a x^... 2023-06-08 The radius of a sphere is changing at the rate of \( 0.1 \mathrm{~cm} / \mathrm{sec} \). The rat... 2023-06-08 If \( f(x)=x^{3}-x^{2}-100 x+1001 \) then which of the following is TRUE?
(a) \( f(2000)f(2001) ... 2023-06-08 A spherical balloon is filled with \( 4500 \pi \) cubic meters of helium gas. If a leak in the b... 2023-06-08 The function \( f(x)=2 \log (x-3)-x^{3}+6 x+3 \) increases in the interval
(a) \( (3,4) \)
(b) \... 2023-06-08 If \( f(x)=x^{3}+a x^{2}+b x+5 \sin ^{2} x \) be a increasing function in \( R \). Then \( a \) ... 2023-06-08 The tangent at point \( \mathrm{P} \) on the curve \( y=x^{2}+1 \) passes through the origin. Th... 2023-06-08 The stationary points on the curve \( y=k x^{3}+6 x^{2} \) in terms of \( k \) is
(a) \( \left(\... 2023-06-08 If \( f^{\prime}(x)=g(x)(x-a)^{2} \), where \( g(a) \neq 0 \) and is continuous at \( x=a \), th... 2023-06-08 For \( a \in[\pi, 2 \pi] \) and \( n \in I \), the critical points of \( f(x)=\frac{1}{3} \) \( ... 2023-06-08 Let the function \( g:(-\infty, \infty) \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \)... 2023-06-08 Let \( f(x)=\int_{x^{2}}^{x^{2}+1} e^{-t^{2}} d t, x \in(-\infty, \infty) \) then the interval f... 2023-06-08 Let \( f(x)=x^{3}+b x^{2}+c x+d ; 0b^{2}c \) then \( f(x) \)
(a) Is strictly increasing
(b) Has ... 2023-06-08 \( f(x)=x^{2}-2 b x+2 c^{2} \) and \( g(x)=-x^{2}-2 c x+b^{2} \) if the minimum value of \( \mat...