A weightless horizontal rod is free to rotate about an axis \( \mat...
A weightless horizontal rod is free to rotate about an axis \( \mathrm{OO}^{\prime} \). Two masses, each of \( 1 \mathrm{~kg} \). are placed at \( \mathrm{A} \) and \( \mathrm{A}^{\prime} \) such that \( \mathrm{O}^{\prime} \mathrm{A}=\mathrm{O}^{\prime} \mathrm{A}^{\prime}=0.20 \) meter. Now a torque of 2.0 Newton-meter is applied on the system which rotates about \( \mathrm{OO}^{\prime} \). If the masses are displaced to \( \mathrm{B} \) and \( \mathrm{B}^{\prime} \) such that \( \mathrm{O}^{\prime} \mathrm{B}=\mathrm{O}^{\prime} \mathrm{B}^{\prime}=0.50 \) meter, then decrement in angular acceleration will be-
(1) \( 21 \mathrm{rad} / \mathrm{sec}^{2} \)
(2) \( 42 \mathrm{rad} / \mathrm{sec}^{2} \)
(3) \( 12 \mathrm{rad} / \mathrm{sec}^{2} \)
(4) \( 24 \mathrm{rad} / \mathrm{sec}^{2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live