Assume that \( \lim _{\theta \rightarrow-1} f(\theta) \) exists and \[ \frac{\theta^{2}+\theta-2...
Channel:
Subscribers:
456,000
Published on ● Video Link: https://www.youtube.com/watch?v=oqgxMKIWE_8
Assume that \( \lim _{\theta \rightarrow-1} f(\theta) \) exists and
\[
\frac{\theta^{2}+\theta-2}{\theta+3} \leq \frac{f(\theta)}{\theta^{2}} \leq \frac{\theta^{2}+2 \theta-1}{\theta+3}
\]
holds for certain interval containing the point \( \theta=-1 \) \( \lim _{\theta \rightarrow-1} \frac{f(\theta)}{\theta^{2}} \)
(A) equal to \( f(-1) \)
(B) equal to 1
(C) equal to \( -1 \)
(D) non-existent
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live