\( \begin{array}{lll}\text { Information-1: } & \text { Principal quantum number } \mathbf{n} \...
\( \begin{array}{lll}\text { Information-1: } & \text { Principal quantum number } \mathbf{n} \text { is defined as } & 1,2,3, \ldots \ldots \\ \text { Information-2 : } & \text { Azimuthal quantum number } l \text { is defined as } & 1 \text { to }(\mathrm{n}+2) \text { in integral steps } \\ \text { Information-3: } & \text { Magnetic quantum number } \mathbf{m} \text { is defined as } & -l / 2 \text { to }+l / 2 \\ & & \begin{array}{l}\text { (including zero, if any) } \\ \text { in integral steps. }\end{array} \\ & & \\ - & \text { Information-4 }: & \text { Spin quantum number } \mathbf{s}^{\prime} \text { has six possible values }\left(-2,-1,-\frac{1}{2},+\frac{1}{2},+1,+2\right)\end{array} \)
- Information-5: \( \quad \) The sub-shell corresponding to \( l=1,2,3,4,5 \ldots \) designated as \( \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{J}, \mathrm{K} \ldots \) respectively.
Information-6: The values of \( m \) for a given value of \( l \) give the number of orbitals in a sub-shell.
Information-7: The principles for filling electrons in the shells remain unchanged.
- On the basis of above informations, answer the following questions.
- The number of orbitals \& the maximum number of electrons that can be filled in a J sub-shell are respectively.
(A) 6,36
(B) 5,30
(C) 4, 24
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live