\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ List I } & List II \\
\hline a. In \( \triangle A B C \), if \( \cos 2 A+\cos 2 B+ \) \( \cos 2 C=-1 \) then we can conclude that triangle is & p. Equilateral triangle \\
\hline b. In \( \triangle A B C \) if \( \tan A0, \tan B0 \) and \( \tan A \) \( \tan B1 \), then triangle is & q. Right angled triangle \\
\hline c. In \( \triangle A B C \) if \( \cos ^{3} A+\cos ^{3} B+\cos ^{3} C= \) \( 3 \cos A \cos B \cos C \) then triangle is & r. Acute angled triangle \\
\hline d. In \( \triangle A B C \) if \( \cot A0 \), cot \( B0 \) and \( \cot A \) \( \cot B1 \), then triangle is & s. Obtuse angled triangle \\
\hline
\end{tabular}
Codes
(1) \( \begin{array}{lllll} & \mathrm{a} & \mathrm{b} & \mathrm{c} & \mathrm{d} \\ \text { (2) } & \mathrm{q} & \mathrm{r} & \mathrm{p}\end{array} \)
(2) \( \mathrm{r} \quad \mathrm{s} \quad \mathrm{q} \quad \mathrm{p} \)
(3) \( \mathrm{q} \quad \mathrm{s} \quad \mathrm{p} \quad \mathrm{r} \)
(4) \( \begin{array}{llll}\mathrm{q} & 3 & \mathrm{~s} & \mathrm{p}\end{array} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live