\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{c|}{\begin{tabular}{c}
Column- \\
II
\end{tabular}} \\
\hline (A) & \begin{tabular}{l}
If \( |z-2 i|+|z-7 i|=k \), then locus \\
of \( z \) is an ellipse if \( k= \)
\end{tabular} & (P) & 7 \\
\hline (B) & \begin{tabular}{l}
If \( \mid(2 z-3) /(3 z-2)=k \), then \\
locus of \( z \) is a circle if \( 2 / 3 \) is a \\
point inside circle and \( 3 / 2 \) is \\
outside the circle if \( k= \)
\end{tabular} & (Q) & 8 \\
\hline (C) & \begin{tabular}{l}
If \( |z-3|-|z-4 i|=k \), then locus \\
of \( z \) is a hyperbola if \( k \) is
\end{tabular} & (R) & 2 \\
\hline (D) & \begin{tabular}{l}
If \( |z-(k / 4 i)|=(k / 50) \) \\
\( |a \bar{z}+\bar{a} z+b| \), where \( a=3+4 i \), \\
then locus of \( z \) is a hyperbola \\
with \( k= \)
\end{tabular} & (S) & 4 \\
\hline \multicolumn{2}{|l|}{} & (T) & 5 \\
\hline
\end{tabular}
(1) A-P,S; B-P,Q,R,S,T; C-Q,S; D-P,R
(2) A-P,Q; B-P,Q,R,S,T; C-R,S; D-P,Q
(3) A-P,Q,R,S;B-S,T; C-Q,S; D-P,R
(4) A-R,S; B-P,Q; C-P,Q; D-P,Q,R,S,T