\begin{tabular}{|l|l|l|l|l|}
\hline A. & \( \left\{x \in\left[-\frac{2 \pi}{3}, \frac{2 \pi}{3}\...
\begin{tabular}{|l|l|l|l|l|}
\hline A. & \( \left\{x \in\left[-\frac{2 \pi}{3}, \frac{2 \pi}{3}\right]: \cos x+\sin x=1\right\} \) & P. & Has two elements \\
\hline B. & \( \left\{x \in\left[-\frac{5 \pi}{18}, \frac{5 \pi}{18}\right]: \sqrt{3} \tan 3 x=1\right\} \) & q. & Has three elements \\
\hline C. & \( \left\{x \in\left[-\frac{6 \pi}{5}, \frac{6 \pi}{5}\right]: 2 \cos (2 x)=\sqrt{3}\right\} \) & r. & Has four elements \\
\hline D. & \( \left\{x \in\left[-\frac{7 \pi}{4}, \frac{7 \pi}{4}\right]: \sin x-\cos x=1\right\} \) & s. & Has five elements \\
\hline
\end{tabular}
The correct option is:
(a) \( \mathrm{A} \rightarrow \mathrm{p} ; \mathrm{B} \rightarrow \mathrm{s} ; \mathrm{C} \rightarrow \mathrm{p} ; \mathrm{D} \rightarrow \mathrm{s} \)
(b) \( \mathrm{A} \rightarrow \) p; \( \mathrm{B} \rightarrow \mathrm{p} ; \mathrm{C} \rightarrow \mathrm{t} ; \mathrm{D} \rightarrow \mathrm{r} \)
(c) \( \mathrm{A} \rightarrow \) q; \( \mathrm{B} \rightarrow \mathrm{p} ; \mathrm{C} \rightarrow \mathrm{t} ; \mathrm{D} \longrightarrow \mathrm{s} \)
(d) \( \mathrm{A} \rightarrow \mathrm{q} ; \mathrm{B} \rightarrow \mathrm{s} ; \mathrm{C} \rightarrow \mathrm{p} ; \mathrm{D} \rightarrow \mathrm{r} \)
(b)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2023-06-19 | Given \( a_{1}=\frac{1}{2}\left(a_{0}+\frac{A}{a_{0}}\right), a_{2}=\frac{1}{2}\left(a_{1}+\frac... |
2023-06-19 | Mark the correction alternative in the following: A student was asked to prove a statement \( P(... |
2023-06-19 | Prove that \( \sin x+\sin 3 x+\ldots+\sin (2 n-1) x=\frac{\sin ^{2} n x}{\sin x} \) for all \( n... |
2023-06-19 | Prove the following by the principle of mathematical induction:
\[
a+a r+a r^{2}+\ldots+a r^{n-1... |
2023-06-19 | For all \( n \in N, \sum n \)
(a) \( \frac{(2 n+1)^{2}}{8} \)
(b) \( \frac{(2 \mathrm{n}+1)^{2}}... |
2023-06-19 | \( 1+2+3+\ldots \ldots+n\frac{(n+2)^{2}}{8}, n \in N \), is true for
(a) \( n \geq 1 \)
(b) \( n... |
2023-06-19 | The inequality \( n !2^{n-1} \) is true
(a) For all \( n1 \)
(b) For all \( n2 \)
(c) For all \(... |
2023-06-19 | The difference between an + ve integer and its cube is divisible by-
(a) 4
(b) 6
(c) 9
(d) None ... |
2023-06-19 | If \( \mathrm{n} \) is a natural number then \( \left(\frac{\mathrm{n}+1}{2}\right)^{\mathrm{n}}... |
2023-06-19 | If \( p(n): n^{2}100 \) then
(a) \( p(1) \) is true
(b) \( p(4) \) is true
(c) \( p(k) \) is tru... |
2023-06-19 | \begin{tabular}{|l|l|l|l|l|}
\hline A. & \( \left\{x \in\left[-\frac{2 \pi}{3}, \frac{2 \pi}{3}\... |
2023-06-19 | \( \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots \ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}, n \in... |
2023-06-19 | A student was asked to prove a statement by induction. He proved
(i) \( P(5) \) is true and
(ii)... |
2023-06-19 | For every natural number \( n, n(n+3) \) is always-
(a) Multiple of 4
(b) Multiple of 5
(c) Even... |
2023-06-19 | For every positive integer \( n, \frac{n^{7}}{7}+\frac{n^{5}}{5}+\frac{2 n^{3}}{3}-\frac{n}{105}... |
2023-06-19 | The sum of the cubes of three consecutive natural numbers is divisible by- (a) 2 (b) 5 (c) 7 (d) 9 |
2023-06-19 | The greatest positive integer. which divides \( (n+16)(n+17) \) \( (n+18)(n+19) \), for all \( \... |
2023-06-19 | For positive integer \( \mathrm{n}, 3 nn \) ! when-
(a) \( n \geq 6 \)
(b) \( n7 \)
(c) \( n \ge... |
2023-06-19 | The equation \( 2 \cos ^{2} \frac{x}{2} \sin ^{2} x=x^{2}+x^{-2} ; 0x \leq \frac{\pi}{2} \) has
... |
2023-06-19 | The number of elements in the set \( S=\left\{\theta \in[-4 \pi, 4 \pi]: 3 \cos ^{2} 2 \theta+6 ... |
2023-06-19 | Let
\[
S=\left\{\theta \in\left(0, \frac{\pi}{2}\right) ; \sum_{m=1}^{9} \sec \left(\theta+(m-1)... |